Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9188, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649733

RESUMEN

This study assessed Rhodotorula paludigena CM33's growth and ß-carotene production in a 22-L bioreactor for potential use as an aquatic animal feed supplement. Optimizing the feed medium's micronutrient concentration for high-cell-density fed-batch cultivation using glucose as the carbon source yielded biomass of 89.84 g/L and ß-carotene concentration of 251.64 mg/L. Notably, using sucrose as the carbon source in feed medium outperforms glucose feeds, resulting in a ß-carotene concentration of 285.00 mg/L with a similar biomass of 87.78 g/L. In the fed-batch fermentation using Sucrose Feed Medium, R. paludigena CM33 exhibited high biomass production rates (Qx) of 0.91 g/L.h and remarkable ß-carotene production rates (Qp) of 2.97 mg/L.h. In vitro digestibility assays showed that R. paludigena CM33, especially when cultivated using sucrose, enhances protein digestibility affirming its suitability as an aquatic feed supplement. Furthermore, R. paludigena CM33's nutrient-rich profile and probiotic potential make it an attractive option for aquatic nutrition. This research highlights the importance of cost-effective carbon sources in large-scale ß-carotene production for aquatic animal nutrition.


Asunto(s)
Biomasa , Rhodotorula , beta Caroteno , Rhodotorula/metabolismo , beta Caroteno/metabolismo , beta Caroteno/biosíntesis , Animales , Alimentación Animal , Fermentación , Reactores Biológicos , Sacarosa/metabolismo , Glucosa/metabolismo , Medios de Cultivo/química , Técnicas de Cultivo Celular por Lotes/métodos , Organismos Acuáticos/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 69, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38183488

RESUMEN

While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy. The transglycosylation products were evaluated by antioxidant and anti-proliferative assays, followed by an anti-migration assay for the selected phenolic acid glucosyl ester. Os9BGlu31 mutants produced higher yield and activity than wild-type enzymes on phenolic acids to produce phenolic acid glucosyl esters. Among these, gallic acid glucosyl ester (ß-glucogallin) had the highest antioxidant activity and anti-proliferative activity in cholangiocarcinoma cells. It also inhibited the migration of cholangiocarcinoma cells. Our study demonstrated that rice Os9BGlu31 transglucosidase is a promising enzyme for glycosylation of bioactive compounds in one-step reactions and provides evidence that ß-glucogallin inhibits cell proliferation and migration of cholangiocarcinoma cells. KEY POINTS: • Os9BGlu31 transglucosidases produced phenolic acid glucosyl esters for bioactivity testing. • Phenolic acid glucosyl esters were tested for cytotoxicity in cholangiocarcinoma cells. • ß-Glucogallin displayed the highest inhibition of cholangiocarcinoma cell growth.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Oryza , Antioxidantes , Ésteres , Conductos Biliares Intrahepáticos
3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139021

RESUMEN

Rhodotorula paludigena CM33 is an oleaginous yeast that has been demonstrated to accumulate substantial quantities of intracellular lipids and carotenoids. In this study, crude glycerol, a by-product of biodiesel production, was used as a carbon source to enhance the accumulation of lipids and carotenoids in the cells. The culture conditions were first optimized using response surface methodology, which revealed that the carotenoid concentration and lipid content improved when the concentration of crude glycerol was 40 g/L. Different fermentation conditions were also investigated: batch, repeated-batch, and fed-batch conditions in a 500 L fermenter. For fed-batch fermentation, the maximum concentrations of biomass, lipids, and carotenoids obtained were 46.32 g/L, 37.65%, and 713.80 mg/L, respectively. A chemical-free carotenoid extraction method was also optimized using high-pressure homogenization and a microfluidizer device. The carotenoids were found to be mostly beta-carotene, which was confirmed by HPLC (high pressure liquid chromatography), LC-MS (liquid chromatography-mass spectrometry), and NMR (nuclear magnetic resonance). The results of this study indicate that crude glycerol can be used as a substrate to produce carotenoids, resulting in enhanced value of this biodiesel by-product.


Asunto(s)
Glicerol , Rhodotorula , Biocombustibles/análisis , Carotenoides , Biomasa , Lípidos
4.
Nat Prod Res ; : 1-9, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526601

RESUMEN

In the present study, we derivatized several hydroxycinnamic and hydroxybenzoic acids to phenolic amides (PAMs) via one step BOP mediated amide coupling reactions. Fifteen PAMs were synthesized in >40% yields and were screened for their cytotoxic activities against four cancer cell lines: THP-1 (leukaemia), HeLa (cervical), HepG2 (liver), and MCF-7 (breast), in comparison to 5-flurouracil (5-FU). Four amides showed IC50 ranging from 5 to 55 µM against all four cell lines. In contrast, tetradecyl-gallic-amide (13) affected only THP-1 leukaemia cells with IC50 of 3.08 µM. The activities of these compounds support the promise of phenolic amides as anticancer agents.

5.
Dev Comp Immunol ; 147: 104896, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473826

RESUMEN

Yeast is a health-promoting and bio-therapeutic probiotic that is commonly used in aquaculture. Rhodotorula paludigena CM33 can accumulate amounts of intracellular carotenoids and lipid, which are regarded as nutritionally beneficial compounds in various aspects. The aim of this study was to evaluate the impact of different levels of R. paludigena CM33 (RD) incorporated in a dietary composition at 0% (control), 1% (1% RD), 2% (2% RD), and 5% (5% RD) on the growth of shrimp (Litopenaeus vannamei), their immune-related gene expression, intestinal health, resistance to Vibrio parahaemolyticus (VPAHPND) infection, and meat composition. The results showed significant improvements in the specific growth rate, weight gain, and survival of shrimp fed with 1% RD, 2% RD, and 5% RD, which were higher than the control group after 4 weeks of administration. The administration of 5% RD group resulted in a decrease in cumulative mortality upon VPAHPND challenge when compared to the control group. Furthermore, the expression levels of immune-responsive genes, including proPO system (prophenoloxidase-2: PO2), antioxidant enzyme (superoxide dismutase: SOD, glutathione peroxidase: GPX, and catalase: CAT), JAK/STAT pathway (signal transducer and activator of transcription: STAT, gamma interferon inducible lysosomal thiol reductase: GILT), IMD pathway (inhibitor of nuclear factor kappa-B kinase subunit beta and epsilon: IKKb and IKKe), and Toll pathway (Lysozyme) genes, were up-regulated in the 5% RD group. In the context of microbiota, microbiome analysis revealed that the main phyla in shrimp intestines were Proteobacteria, Firmicutes, Bacteroidota, Campilobacterota, Actinobacteriota, and Verrucomicrobiota. At the genus level, Vibrio was found to be reduced in the 5% RD group, whereas the abundance of potentially beneficial bacteria Bifidobacterium was increased. The 5% RD group showed a significant increase in the levels of crude protein and crude lipid, both of which are essential nutritious components. Our results show the capability of R. paludigena CM33 as a probiotic supplement in shrimp feed in improving growth, antimicrobial responses against VPAHPND, and meat quality by increasing protein and lipid content in shrimp.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , Resistencia a la Enfermedad/genética , Inmunidad Innata , Quinasas Janus/genética , Transducción de Señal , Factores de Transcripción STAT/genética , Dieta , Suplementos Dietéticos , Alimentos Marinos , Intestinos , Expresión Génica , Lípidos , Penaeidae/genética , Vibrio parahaemolyticus/fisiología
6.
Biotechnol Biofuels Bioprod ; 16(1): 17, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36740699

RESUMEN

An oleaginous yeast Rhodotorula paludigena CM33 was pyrolyzed for the first time to produce bio-oil and biochar applying a bench-scale reactor. The strain possessed a high lipid content with the main fatty acids similar to vegetable oils. Prior to pyrolysis, the yeast was dehydrated using a spray dryer. Pyrolysis temperatures in the range of 400-600 °C were explored in order to obtain the optimal condition for bio-oil and biochar production. The result showed that a maximum bio-oil yield of 60% was achieved at 550 °C. Simulated distillation gas chromatography showed that the bio-oil contained 2.6% heavy naphtha, 20.7% kerosene, 24.3% biodiesel, and 52.4% fuel oil. Moreover, a short path distillation technique was attempted in order to further purify the bio-oil. The biochar was also characterized for its properties. The consequence of this work could pave a way for the sustainable production of solid and liquid biofuel products from the oleaginous yeast.

7.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835256

RESUMEN

Spinal cord injury (SCI) causes inflammation and neuronal degeneration, resulting in functional movement loss. Since the availability of SCI treatments is still limited, stem cell therapy is an alternative clinical treatment for SCI and neurodegenerative disorders. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) are an excellent option for cell therapy. This study aimed to induce hWJ-MSCs into neural stem/progenitor cells in sphere formation (neurospheres) by using neurogenesis-enhancing small molecules (P7C3 and Isx9) and transplant to recover an SCI in a rat model. Inducted neurospheres were characterized by immunocytochemistry (ICC) and gene expression analysis. The best condition group was selected for transplantation. The results showed that the neurospheres induced by 10 µM Isx9 for 7 days produced neural stem/progenitor cell markers such as Nestin and ß-tubulin 3 through the Wnt3A signaling pathway regulation markers (ß-catenin and NeuroD1 gene expression). The neurospheres from the 7-day Isx9 group were selected to be transplanted into 9-day-old SCI rats. Eight weeks after transplantation, rats transplanted with the neurospheres could move normally, as shown by behavioral tests. MSCs and neurosphere cells were detected in the injured spinal cord tissue and produced neurotransmitter activity. Neurosphere-transplanted rats showed the lowest cavity size of the SCI tissue resulting from the injury recovery mechanism. In conclusion, hWJ-MSCs could differentiate into neurospheres using 10 µM Isx9 media through the Wnt3A signaling pathway. The locomotion and tissue recovery of the SCI rats with neurosphere transplantation were better than those without transplantation.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Regeneración de la Medula Espinal , Gelatina de Wharton , Animales , Humanos , Ratas , Diferenciación Celular/fisiología , Células Cultivadas , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Traumatismos de la Médula Espinal/terapia , Tubulina (Proteína)/metabolismo , Gelatina de Wharton/citología
8.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35328499

RESUMEN

Corneal epithelium, the outmost layer of the cornea, comprises corneal epithelial cells (CECs) that are continuously renewed by limbal epithelial stem cells (LESCs). Loss or dysfunction of LESCs causes limbal stem cell deficiency (LSCD) which results in corneal epithelial integrity loss and visual impairment. To regenerate the ocular surface, transplantation of stem cell-derived CECs is necessary. Human Wharton's jelly derived mesenchymal stem cells (WJ-MSCs) are a good candidate for cellular therapies in allogeneic transplantation. This study aimed to test the effects of treatments on three signaling pathways involved in CEC differentiation as well as examine the optimal protocol for inducing corneal epithelial differentiation of human WJ-MSCs. All-trans retinoic acid (RA, 5 or 10 µM) inhibited the Wnt signaling pathway via suppressing the translocation of ß-catenin from the cytoplasm into the nucleus. SB505124 downregulated the TGF-ß signaling pathway via reducing phosphorylation of Smad2. BMP4 did not increase phosphorylation of Smad1/5/8 that is involved in BMP signaling. The combination of RA, SB505124, BMP4, and EGF for the first 3 days of differentiation followed by supplementing hormonal epidermal medium for an additional 6 days could generate corneal epithelial-like cells that expressed a CEC specific marker CK12. This study reveals that WJ-MSCs have the potential to transdifferentiate into CECs which would be beneficial for further applications in LSCD treatment therapy.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Diferenciación Celular , Células Cultivadas , Células Epiteliales , Humanos , Células Madre Mesenquimatosas/metabolismo , Vía de Señalización Wnt
9.
J Biotechnol ; 329: 56-64, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33549673

RESUMEN

Sixty-seven yeast strains were isolated from castor beans then their endogenous lipids were stained by Nile Red (NR) fluorescence dye, and flow cytometry was used to obtain a strain with a high relative mean fluorescence intensity (MFI) value. The highest MFI value was obtained for strain CM33, which produced a maximum lipid content of 20.8 % dry cell weight (DCW). Based on the sequence of the ITS-5.8S-ITS rDNA and D1/D2 26S rDNA regions, CM33 showed 99 % identity with Rhodotorula paludigena. The potential of CM33 to assimilate various carbon sources was examined by growth on minimal media using glucose, glycerol, sucrose or xylose. CM33 was grown in glucose-based medium for 96 h and exhibited a maximum lipid content of 23.9 % DCW. Furthermore, when cells were cultured on molasses waste, their biomass, lipid content and lipid concentration reached 16.5 g/L, 37.1 % DCW and 6.1 g/L, respectively. These results demonstrated the potential of R. paludigena CM33 to contribute to a value-added carbon chain by converting renewable waste materials for biolipid production.


Asunto(s)
Rhodotorula , Biomasa , Lípidos , Rhodotorula/genética , Levaduras
10.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105778

RESUMEN

Deficiency of corneal epithelium causes vision impairment or blindness in severe cases. Transplantation of corneal epithelial cells is an effective treatment but the availability of the tissue source for those cells is inadequate. Stem cells can be induced to differentiate to corneal epithelial cells and used in the treatment. Multipotent stem cells (mesenchymal stem cells) and pluripotent stem cells (embryonic stem cells and induced pluripotent stem cells) are promising cells to address the problem. Various protocols have been developed to induce differentiation of the stem cells into corneal epithelial cells. The feasibility and efficacy of both human stem cells and animal stem cells have been investigated for corneal epithelium regeneration. However, some physiological aspects of animal stem cells are different from those of human stem cells, the protocols suited for animal stem cells might not be suitable for human stem cells. Therefore, in this review, only the investigations of corneal epithelial differentiation of human stem cells are taken into account. The available protocols for inducing the differentiation of human stem cells into corneal epithelial cells are gathered and compared. Also, the pathways involving in the differentiation are provided to elucidate the relevant mechanisms.


Asunto(s)
Epitelio Corneal/citología , Epitelio Corneal/fisiología , Células Madre/citología , Diferenciación Celular , Técnicas de Cocultivo , Células Madre Embrionarias/citología , Células Epiteliales/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Regeneración/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología
11.
Microbiol Resour Announc ; 9(19)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381615

RESUMEN

The genome sequence of Rhodotorula paludigena strain CM33, an oleaginous yeast isolated from castor bean (Ricinus sp.) in Thailand, is reported here. Genome sequencing and assembly yielded 20,657,327 bases with a 64.3% G+C content.

12.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226809

RESUMEN

Currently, human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) are an attractive source of stem cells for cell-based therapy, owing to their ability to undergo self-renewal and differentiate into all mesodermal, some neuroectodermal, and endodermal progenies, including hepatocytes. Herein, this study aimed to investigate the effects of sodium butyrate (NaBu), an epigenetic regulator that directly inhibits histone deacetylase, on hepatic endodermal lineage differentiation of hWJ-MSCs. NaBu, at 1 mM, optimally promoted endodermal differentiation of hWJ-MSCs, along with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) supplementation (EGF + bFGF + 1 mM NaBu). CXCR4, HNF3ß, SOX17 (endodermal), and GATA6 (mesendodermal) mRNAs were also up-regulated (p < 0.001). Immunocytochemistry and a Western blot analysis of SOX17 and HNF3ß confirmed that the EGF + bFGF + 1 mM NaBu condition was appropriately pre-treated with hWJ-MSCs before hepatogenic differentiation. Furthermore, the hepatogenic medium + NaBu pre-treatment up-regulated hepatoblast (AFP and HNF3ß) and hepatic (CK18 and ALB) markers, and increased the proportion of mature hepatocyte functions, including G6P, C/EBPα, and CYP2B6 mRNAs, glycogen storage and urea secretion. The hepatogenic medium + NaBu in the pre-treatment step can induce hWJ-MSC differentiation toward endodermal, hepatoblastic, and hepatic lineages. Therefore, the hepatogenic medium + NaBu pre-treatment for differentiating hWJ-MSCs could represent an alternative protocol for cell-based therapy and drug screening in clinical applications.


Asunto(s)
Hepatocitos/citología , Células Madre Mesenquimatosas/citología , Gelatina de Wharton/citología , Animales , Ácido Butírico/farmacología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular/efectos de los fármacos , Separación Celular , Células Cultivadas , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos
13.
Front Genet ; 9: 53, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29552025

RESUMEN

The domestic water buffalo is native to the Asian continent but through historical migrations and recent importations, nowadays has a worldwide distribution. The two types of water buffalo, i.e., river and swamp, display distinct morphological and behavioral traits, different karyotypes and also have different purposes and geographical distributions. River buffaloes from Pakistan, Iran, Turkey, Egypt, Romania, Bulgaria, Italy, Mozambique, Brazil and Colombia, and swamp buffaloes from China, Thailand, Philippines, Indonesia and Brazil were genotyped with a species-specific medium-density 90K SNP panel. We estimated the levels of molecular diversity and described population structure, which revealed historical relationships between populations and migration events. Three distinct gene pools were identified in pure river as well as in pure swamp buffalo populations. Genomic admixture was seen in the Philippines and in Brazil, resulting from importations of animals for breed improvement. Our results were largely consistent with previous archeological, historical and molecular-based evidence for two independent domestication events for river- and swamp-type buffaloes, which occurred in the Indo-Pakistani region and close to the China/Indochina border, respectively. Based on a geographical analysis of the distribution of diversity, our evidence also indicated that the water buffalo spread out of the domestication centers followed two major divergent migration directions: river buffaloes migrated west from the Indian sub-continent while swamp buffaloes migrated from northern Indochina via an east-south-eastern route. These data suggest that the current distribution of water buffalo diversity has been shaped by the combined effects of multiple migration events occurred at different stages of the post-domestication history of the species.

14.
PLoS One ; 12(1): e0168059, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28060847

RESUMEN

Articular cartilage is an avascular, alymphatic, and aneural system with very low regeneration potential because of its limited capacity for self-repair. Mesenchymal stem cells (MSCs) are the preferred choice for cell-based therapies. Glycogen synthase kinase 3 (GSK-3) inhibitors are compounds that can induce the Wnt signaling pathway, which is involved in chondrogenesis and cartilage development. Here, we investigated the influence of lithium chloride (LiCl) and SB216763 synergistically with TGF-ß3 on chondrogenic differentiation in human mesenchymal stem cells derived from Wharton's jelly tissue (hWJ-MSCs). hWJ-MSCs were cultured and chondrogenic differentiation was induced in monolayer and pellet experiments using chondrogenic medium, chondrogenic medium supplemented with LiCl, or SB216763 for 4 weeks. After in vitro differentiation, cultured cells were examined for the expression of Sox9, ACAN, Col2a1, and ß-catenin markers. Glycosaminoglycan (GAG) accumulation was also examined by Alcian blue staining. The results indicated that SB216763 was more effective than LiCl as evidenced by a higher up-regulation of the expression of cartilage-specific markers, including Sox9, ACAN, Col2a1 as well as GAG accumulation. Moreover, collagen type II expression was strongly observed in cells cultured in the chondrogenic medium + SB216763 as evidenced by western blot analysis. Both treatments appeared to mediate the Wnt signaling pathway by up-regulating ß-catenin gene expression. Further analyses showed that all treatments suppressed the progression of chondrocyte hypertrophy, determined by decreased expression of Col10a1 and Runx2. These results indicate that LiCl and SB216763 are potential candidates for further in vivo therapeutic trials and would be of great importance for cartilage regeneration.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Mesenquimatosas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Gelatina de Wharton , Cartílago Articular/citología , Separación Celular , Células Cultivadas , Indoles/farmacología , Cloruro de Litio/farmacología , Maleimidas/farmacología , Células Madre Mesenquimatosas/citología , Factor de Crecimiento Transformador beta3/farmacología , Cordón Umbilical/citología , Vía de Señalización Wnt/efectos de los fármacos
15.
Theriogenology ; 86(1): 214-20, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27160442

RESUMEN

During the past decade, vitrification has been acknowledged as an efficient alternative to traditional slow-rate freezing in both human and animal embryology. The buffalo is the major milk and meat producing farm animal in many developing countries. Cryopreservation of buffalo oocytes and embryos is very important in preserving this species for future use. This review discusses the recent buffalo oocytes and embryos vitrification procedures, different types of cryoinjuries, and other factors affecting the vitrification of buffalo oocytes and embryos.


Asunto(s)
Búfalos/fisiología , Criopreservación/veterinaria , Embrión de Mamíferos/fisiología , Oocitos , Vitrificación , Animales , Femenino
16.
Ciênc. rural ; 46(5): 790-795, May 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-777280

RESUMEN

ABSTRACT: Rapeseed (Brassica napus L.) with purple-red leaf is a valuable resource for plant breeder. It was utilized in breeding program as a morphological marker, and the source of resistance gene to biotic or abiotic stress due to its anthocyanin content (AC). However, the inheritance of AC and the correlation with chlorophyll content (CC) in rapeseed leaf are still unknown. This study aimed to investigate the gene action and heritability of AC and CC in a 10-Zi006 × 10-4438 rapeseed cross using generation mean analysis. The results indicated that AC and CC were controlled by main gene effect and non-allelic interactions. The AC was mainly controlled by genetic effect. However, the genetic effect and non-genetic effect were both important for CC. In addition, the total fixable gene effects was higher than unfixable gene effects for AC, but opposite results was found for CC. Both negative and positive correlations between AC and CC were obtained in different generations.


RESUMO: Colza (Brassica napus L.) de folhas vermelho-púrpura é um recurso valioso para os produtores. Foi utilizada em programas de melhoramento como um marcador morfológico ao gene de resistência a estresses abióticos, bióticos ou devido ao seu teor de antocianinas (AC). No entanto, a herança da AC e a correlação com o teor de clorofila (CC) na folha de colza ainda são desconhecidos. Este estudo teve como objetivo investigar a ação dos genes e hereditariedade da CA e CC em 10 Zi006 × 10-4438 colza, usando geração de análise. Os resultados indicaram que CA e CC foram controladas por efeito do gene principal e interacções não-alélicas. O AC foi controlado principalmente por efeito genético. No entanto, os efeitos genético e não genético foram ambos importantes para CC. Além disso, o total de efeitos gênicos solucionáveis foi maior do que os efeitos de genes para AC, mas os resultados opostos foram encontrados para CC. Correlações negativas e positivas entre CA e CC foram obtidas em diferentes gerações.

17.
J Mol Microbiol Biotechnol ; 25(6): 372-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26584430

RESUMEN

To reduce the cost of cytokines and growth factors in stem cell research, a simple method for the production of soluble and biological active human basic fibroblast growth factor (hbFGF) fusion protein in Escherichia coli was established. Under optimal conditions, approximately 60-80 mg of >95% pure hbFGF fusion proteins (Trx-6xHis-hbFGF and 6xHis-hbFGF) were obtained from 1 liter of culture broth. The purified hbFGF proteins, both with and without the fusion tags, were biologically active, which was confirmed by their ability to stimulate proliferation of NIH3T3 cells. The fusion proteins also have the ability to support several culture passages of undifferentiated human embryonic stem cells and induce pluripotent stem cells. This paper describes a low-cost and uncomplicated method for the production and purification of biologically active hbFGF fusion proteins.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Factor 2 de Crecimiento de Fibroblastos/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Fosfatasa Alcalina/metabolismo , Animales , Técnicas de Cultivo de Célula/economía , Células Madre Embrionarias/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación Bacteriana de la Expresión Génica , Vectores Genéticos , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Células 3T3 NIH , Reacción en Cadena de la Polimerasa , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
18.
Cryobiology ; 69(3): 496-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25224047

RESUMEN

The present study was undertaken to compare the efficacies of Cryotop (CT), solid surface vitrification (SSV) methods and cytochalasin B (CB) treatment for the cryopreservation of immature bovine oocytes, in terms of survival, nuclear maturation, and in vitro development. Solution exposed oocytes were in vitro maturated and fertilized. No difference was found in the rates of survival, nuclear maturation and blastocyst among solution exposed groups and fresh control group, except blastocysts rates in oocytes exposed to CB, cryoprotectant (CPA) and fluorescein diacetate (FDA) group (CB-CPA-FDA) (23%) significantly lower than that of control group (32%). CB pretreated ((+)CB) or non-pretreated ((-)CB) COCs were vitrified either by SSV or CT. Among four vitrified groups the nuclear maturation rates (CT(-)CB: 58%, CT(+)CB: 57%, SSV(-)CB: 60%, SSV(+)CB: 63%), cleavage (CT(-)CB: 36%, CT(+)CB: 24%, SSV(-)CB: 34%, SSV(+)CB: 26%) and blastocysts rates (CT(-)CB: 6%, CT(+)CB: 7%, SSV(-)CB: 4%, SSV(+)CB: 6%) did not differ, but the rates of the four vitrified groups were significantly lower than those of non-vitrified group (81%, 71% and 26%, respectively). We thus conclude that CT and SSV perform equally in vitrification of bovine immature oocytes, and CB did not increase the viability, nuclear maturation, or in vitro development of vitrified oocytes.


Asunto(s)
Bovinos/fisiología , Criopreservación/veterinaria , Crioprotectores/metabolismo , Citocalasina B/metabolismo , Oocitos/citología , Vitrificación , Animales , Blastocisto/citología , Supervivencia Celular , Criopreservación/métodos , Desarrollo Embrionario , Femenino , Fertilización In Vitro/métodos , Fertilización In Vitro/veterinaria , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Masculino , Oocitos/efectos de los fármacos , Oocitos/metabolismo
19.
J Reprod Dev ; 60(5): 336-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24909601

RESUMEN

Trichostatin A (TSA), a histone deacetylase inhibitor, has been widely used to improve the cloning efficiency in several species. This brings our attention to investigation of the effects of TSA on developmental potential of swamp buffalo cloned embryos. Swamp buffalo cloned embryos were produced by electrical pulse fusion of male swamp buffalo fibroblasts with swamp buffalo enucleated oocytes. After fusion, reconstructed oocytes were treated with 0, 25 or 50 nM TSA for 10 h. The results showed that there was no significant difference in the rates of fusion (82-85%), cleavage (79-84%) and development to the 8-cell stage (59-65%) among treatment groups. The highest developmental rates to the morula and blastocyst stages of embryos were found in the 25 nM TSA-treated group (42.7 and 30.1%, respectively). We also analyzed the DNA methylation level in the satellite I region of donor cells and in in vitro fertilized (IVF) and cloned embryos using the bisulfite DNA sequencing method. The results indicated that the DNA methylation levels in cloned embryos were significantly higher than those of IVF embryos but approximately similar to those of donor cells. Moreover, there was no significant difference in the methylation level among TSA-treated and untreated cloned embryos. Thus, TSA treatments at 25 nM for 10 h could enhance the in vitro developmental potential of swamp buffalo cloned embryos, but no beneficial effect on the DNA methylation level was observed.


Asunto(s)
Búfalos/embriología , Clonación de Organismos , Metilación de ADN/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Animales , Blastocisto/química , Blastocisto/fisiología , Búfalos/genética , Fusión Celular/veterinaria , ADN/análisis , ADN Satélite/metabolismo , Técnicas de Cultivo de Embriones/veterinaria , Embrión de Mamíferos/química , Femenino , Fertilización In Vitro/veterinaria , Fibroblastos/química , Masculino , Mórula/química , Mórula/fisiología , Técnicas de Transferencia Nuclear/veterinaria
20.
PLoS One ; 9(5): e96712, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24802508

RESUMEN

The Os1BGlu4 ß-glucosidase is the only glycoside hydrolase family 1 member in rice that is predicted to be localized in the cytoplasm. To characterize the biochemical function of rice Os1BGlu4, the Os1bglu4 cDNA was cloned and used to express a thioredoxin fusion protein in Escherichia coli. After removal of the tag, the purified recombinant Os1BGlu4 (rOs1BGlu4) exhibited an optimum pH of 6.5, which is consistent with Os1BGlu4's cytoplasmic localization. Fluorescence microscopy of maize protoplasts and tobacco leaf cells expressing green fluorescent protein-tagged Os1BGlu4 confirmed the cytoplasmic localization. Purified rOs1BGlu4 can hydrolyze p-nitrophenyl (pNP)-ß-D-glucoside (pNPGlc) efficiently (kcat/Km  =  17.9 mM(-1) · s(-1)), and hydrolyzes pNP-ß-D-fucopyranoside with about 50% the efficiency of the pNPGlc. Among natural substrates tested, rOs1BGlu4 efficiently hydrolyzed ß-(1,3)-linked oligosaccharides of degree of polymerization (DP) 2-3, and ß-(1,4)-linked oligosaccharide of DP 3-4, and hydrolysis of salicin, esculin and p-coumaryl alcohol was also detected. Analysis of the hydrolysis of pNP-ß-cellobioside showed that the initial hydrolysis was between the two glucose molecules, and suggested rOs1BGlu4 transglucosylates this substrate. At 10 mM pNPGlc concentration, rOs1BGlu4 can transfer the glucosyl group of pNPGlc to ethanol and pNPGlc. This transglycosylation activity suggests the potential use of Os1BGlu4 for pNP-oligosaccharide and alkyl glycosides synthesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/enzimología , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusión/genética , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , Biología Computacional , Citoplasma/metabolismo , Escherichia coli/genética , Glucósidos/metabolismo , Glicosilación , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Microscopía Fluorescente , Oryza/clasificación , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Estabilidad Proteica , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...